domingo, 29 de enero de 2012

Ensamble de un PC

Elementos básicos para el ensamble:

1. Una mesa amplia con la superficie totalmente limpia.
2. Suficiente luz para poder ensamblar las partes pequeñas sin problemas.
3. Las herramientas y accesorios apropiados.
4. Una pulsera anti-estática.
5. Todos los componentes del sistema.

Los Componentes son:

a) Gabinete y fuente de poder, incluyendo cables de conexión a la tarjeta principal y a los dispositivos de memoria auxiliar.
b) Tarjeta madre (Placa Base)
c) Procesador
d) Slots de Memoria RAM
e) Tarjeta de Video
f) Tarjeta de Audio
g) Tarjeta de fax-MODEM (moduladora/demoduladora).
h) Unidad de lectura y escritura de discos flexibles.
i) Unidad de disco duro
j) Unidad lectora de disco compacto.
k) Cables de comunicación (para el disco duro, el disco flexible y el CD)
l) Teclado, Dispositivo apuntador (Mouse)
m) Monitor SVGA.
n) Bocinas.










Gabinete o carcasa: Es la "caja" donde se acoplan todos los componentes internos de la computadora.

Microprocesador: Es un chip que contiene varios millones de transistores y componentes que permiten realizar los cálculos y procesos de la computadora.

Memoria Ram: es una serie de chips de memoria integrados en tablitas o plaquetas modulares con 168 pines, conocidos como DIMM's. Se enchufan a la tarjeta principal en sus respectivos soquets denominados bancos de memoria RAM. Existen de igual modo Memorias DDR, son los mas recientes, con nuevas características y facilidades de acceso a los datos que se almacenan en éstos.

Tarjeta Madre: Es la placa base o soporte de todos los componentes electrónicos del sistema. 


Tarjeta de Video: Es una tarjeta de circuitos impresos, parecida ala tarjeta principal, solo que mas pequeñas se insertan en la ranura correspondiente, que puede ser del tipo ISA, PCI o AGP.

Tarjeta de Audio: Este tipo de tarjeta fue opcional hasta hace poco tiempo pero con el advenimiento de los
sistemas dedicados a multimediosm se volvió indispensable. Se conecta a a placa principal ya sea en una ranura tipo ISA o PCI.

Fax-MÓDEM: Puede ser tipo ISA o PCI se inserta de la misma manera que las otras.

PCI = Peripheral Component Interface
ISA = Industry Standard Architecture.






Paso 1.- Área de trabajo: El lugar de ensamble puede ser una mesa amplia, no metálica (para evitar descargas eléctricas hacia los delicados componentes y circuitos limpia y con buena iluminación.

Paso 2.- Instalación del procesador: Se toma la tarjeta principal y se prepara para insertar los componentes que van directamente en ella. Los soportes laterales se fijan a la base de la tarjeta, colocando los broches en su posición.



Paso 3.- Instalación de la memoria RAM: Las tablillas DIMM se insertan en los bancos de memoria RAm y se fijan con los seguros laterales. El numero de ranuras puede variar segun el fabricante y el modelo de la tarjeta principal. 






Paso 4.- Fijar la tarjeta principal de gabinete: La tarjeta principal tiene unas perforaciones que coinciden con unos pequeños postes que están sujetos al gabinete, se empalma la tarjeta haciendo coincidir las perforaciones y se fijan con tornillos.

Paso 5.- Instalación de la tarjeta de video: La instalación de tarjetas en las ranuras de expansión, se realiza siempre de la misma manera: primero se insertan para buscar la posición correcta y luego se presiona fuertemente sobre ellas. Las tarjetas de video pueden ser de tipo ISA, PCI o AGP.

Paso 6.- Instalación de la tarjeta de audio: Las tarjetas de audio pueden ser de tipo ISA o PCI. después de identificar el tipo correcto, se localiza la ranura correspondiente y se realiza el mismo procedimiento de la tarjeta de video.



Paso 7.- Instalación de la tarjeta MODEM: También estas tarjetas pueden ser ISA o PCI, para insertarlas, se realiza el mismo procedimiento que en los casos anteriores.


Paso 8.- Colocación de la unidad de disquetes: para instalar este dispositivo conocido como drive o unidad de disco flexible, se retira la tapa que se encuentra generalmente al frente, en la parte media del gabinete. Se introduce la unidad por el conducto rectangular hasta hacer coincidir las entradas de tornillos del drive con los orificios del chasis, para fijar mediante los tornillos.

Paso 9.- Colocación del Disco Duro: Este dispositivo de almacenamiento de datos se coloca por la parte interna del gabinete, dentro de la bahía correspondiente. Se hace coincidir los orificios y se fija con los tornillos correspondientes.





Paso 10.- Colocación del lector de Disco Compacto: El lector de disco compacto se coloca en la bahía superior frontal del gabinete, justo enfrente de la fuente de poder.

Paso 11.- Conexión de los cables de corriente: Estando todos los dispositivos y tarjetas fijos en el gabinete, se procede a conectar los cables de alimentación de corriente eléctrica, a fin de que puedan operar. De la fuente de poder sale un grupo de cables con una Terminal de 20 hilos que se pueden acoplar al soquet que se encuentra en la tarjeta principal.

Paso 12.- Conexión de los cables de datos: Los dispositivos del almacenamiento de información en disquetes, requieren de dos tipos de cables; el de corriente eléctrica y el de datos. Los cables de datos son planos, generalmente de 34 hilos, de color gris, con el hilo 1 marcado con color rojo. Un extremo se conecta al controlador localizado en la tarjeta principal, haciendo coincidir el hilo en rojo con el pin 1 señalado en la placa de base.

Paso 13.- Conexión de las luces piloto ( leds ) : Al frente del gabinete se encuentra dos pequenas cénales luminosas llamadas leds, que indican cuando la computadora esta encendida y que el disco duro se encuentra en uso. Estas señales se conectan a unos pines ubicados en la tarjeta principal, mediante cables de dos hilos que tienen un conector de puente.



Paso 14.- Conexión del interruptor de corriente y el botón de reinicio: Para terminar con las conexiones, se conectan los cables hacia los botones de interrupción y reinicio. El primero permite encender y apagar la computadora; el segundo reinicia el sistema cuando se ha quedado "congelado", a causa de un error de algunas aplicaciones.





Paso 15.- Cerrado del Gabinete: Una vez que todos los componentes internos de la computadora están en su posición correctas y bien conectados, se hace una ultima inspección y se acomodan los cables para evitar que queden doblados o presionados con la tapa del gabinete.



Paso 16.- Conexión del Monitor: El monitor se conecta al sistema mediante dos cables: el de corriente eléctrica, que se conecta al regulador, y el de comunicaciones que tiene una Terminal de 15 pines para conectarse al puerto de video.

Paso 17.- Conexión del teclado: El teclado tiene un cable de comunicaciones con un conector redondo de 6 pines denominado minidin, con un pequeño borde hacia el interior que indica la posición en que debe entrar el puerto correspondiente.

Paso 18.- Conexión del apuntador grafico ( ratón ) : El ratón también utiliza un cable de comunicaciones con un conector minidin; su conexión es similar ala del teclado.

Paso 19.- Conexión de las bocinas: Las bocinas cuentan con un conector machi de 3.5 mms, estereo, que se acopla al conector de salida de la tarjeta de audio en la parte posterior del gabinete.

Paso 20.- Conexión del micrófono: El micrófono se conecta a la computadora por un conector macho 3.5 mms. Se introduce en la tarjeta de audio de entrada correspondiente que viene señaladas en la parte posterior de la tarjeta.






El Hardware ha quedado listo; ahora solo falta instalar y configurar el software para que la computadora comience a trabajar. Se tendrá que instalar el SO y las aplicaciones necesarias para trabajar.

viernes, 27 de enero de 2012

El Disco Duro
























Que es un Disco Duro?


Un disco duro es un dispositivo de almacenamiento que constituye una de las partes más importantes de un computador. Es la parte del computador que contiene la información codificada y que almacena los distintos programas y archivos. Este sistema de almacenamiento opera de manera digital (es decir la información está cuantizada, codificada en valores dicretos de ceros o unos)  en discos de superficies magnéticas que giran rápidamente.


En un computador, entonces el disco duro es una de las partes esenciales y su sistema principal de almacenamiento de archivos.


El disco duro se denominó así con el fin de diferenciarlo de los disquetes o discos flexibles, de mucha menor capacidad de almacenamiento. El disco duro puede almacenar una gran cantidad de gigabytes, mientras que el antiguo disquete sólo almacenaba 1,4 megabytes, ahora en desuso.


El disco duro consiste en una serie de discos o platos que están ubicados dentro de la carcasa del aparato. Estos platos, que normalmente son 2 o 4, aunque puede haber hasta 7, están hechos de aluminio o cristal y giran rápidamente, todos a la vez, impulsados por un motor. 



Los platos son leídos mediante el cabezal de lectura y escritura, que es un conjunto de brazos que se encuentran alineados verticalmente, de manera que no pueden moverse independientemente, sino todos al mismo tiempo. Cada plato es leído por dos brazos que tienen en sus puntas una cabeza de lectura y escritura cada uno, que leen cada cara del plato. Normalmente, hay 8 cabezas para 4 platos. Las cabezas nunca tocan el plato, debido a que podría causar muchos daños teniendo en cuenta la velocidad con la que giran.

Hay varios conceptos para referirse a zonas del disco:
§                     Plato: cada uno de los discos que hay dentro del disco  duro.
§                     Cara: cada uno de los dos lados de un plato.
§                     Cabeza: número de cabezales.
§                     Pistas: una circunferencia dentro de una cara; la pista 0 está en el borde exterior.
§                     Cilindro: conjunto de varias pistas; son todas las circunferencias que están alineadas verticalmente (una de cada cara).
§                     Sector : cada una de las divisiones de una pista. El tamaño del sector no es fijo, siendo el estándar actual 512 bytes, aunque próximamente serán 4 KiB. Antiguamente el número de sectores por pista era fijo, lo cual desaprovechaba el espacio significativamente, ya que en las pistas exteriores pueden almacenarse más sectores que en las interiores. Así, apareció la tecnología ZBR (grabación de bits por zonas) que aumenta el número de sectores en las pistas exteriores, y utiliza más eficientemente el disco duro.


Los platos están constituidos por pistas, que son las circunferencias de cada cara, como en un disco de vinilo. Las cabezas se mueven desde la pista externa, denominada pista 0, hasta la pista interna. Las pistas están alineadas en todos los platos. El conjunto de las pistas alineadas verticalmente en cada plato se llama cilindro. Las pistas están divididas por sectores que no tienen un tamaño fijo. Normalmente, los sectores son de 512 bytes (las unidades de memoria más pequeñas).
El desempeño de un disco duro se mide por distintos factores. Uno de ellos es el tiempo de acceso, que es el tiempo en que el dispositivo comienza a enviar el dato después de recibir la orden. El tiempo de acceso es la suma del tiempo de búsqueda, la latencia y el tiempo de lectura y escritura. El tiempo de búsqueda es que se tarda la cabeza en llegar a la pista de destino. 

La latencia es el tiempo que se espera para que el disco gire hasta que el sector deseado pase por donde la cabeza espera. Finalmente, el tiempo de lectura y escritura es el que demora la controladora en localizar el dato, leerlo y mandar la nueva información al computador. Otro factor importante en un disco duro es la tasa de transferencia que es la velocidad en que se transfiere la información al computador luego de que la cabeza esté en la pista y sector deseado.


Partición de Disco


Una partición de disco, en informática, es el nombre genérico que recibe cada división presente en una sola unidad física de almacenamiento de datos. Toda partición tiene su propio sistema de archivos (formato); generalmente, casi cualquier sistema operativo interpreta, utiliza y manipula cada partición como un disco físico independiente, a pesar de que dichas particiones estén en un solo disco físico.


Tipos de Particiones
El formato o sistema de archivos de las particiones (p. ej. NTFS) no debe ser confundido con el tipo de partición (p. ej. partición primaria), ya que en realidad no tienen directamente mucho que ver. Independientemente del sistema de archivos de una partición (FAT, ext3, NTFS, etc.), existen 3 tipos diferentes de particiones:

§                     Partición primaria: Son las divisiones crudas o primarias del disco, solo puede haber 4 de éstas o 3 primarias y una extendida. Depende de una tabla de particiones. Un disco físico completamente formateado consiste, en realidad, de una partición primaria que ocupa todo el espacio del disco y posee un sistema de archivos. A este tipo de particiones, prácticamente cualquier sistema operativo puede detectarlas y asignarles una unidad, siempre y cuando el sistema operativo reconozca su formato (sistema de archivos).

§                     Partición extendida: También conocida como partición secundaria es otro tipo de partición que actúa como una partición primaria; sirve para contener infinidad de unidades lógicas en su interior. Fue ideada para romper la limitación de 4 particiones primarias en un solo disco físico. Solo puede existir una partición de este tipo por disco, y solo sirve para contener particiones lógicas. Por lo tanto, es el único tipo de partición que no soporta un sistema de archivos directamente.

§      Partición lógica: Ocupa una porción de la partición extendida o la totalidad de la misma, la cual se ha formateado con un tipo específico de sistema de archivos (FAT32, NTFS, ext2,...) y se le ha asignado una unidad, así el sistema operativo reconoce las particiones lógicas o su sistema de archivos. Puede haber un máximo de 23 particiones lógicas en una partición extendida. Linux impone un máximo de 15, incluyendo las 4 primarias, en discos SCSI y en discos IDE 8963.

Sistemas de Archivos

     Los Sistemas de Archivo son encargados de organizar la informacion en el disco duro, esto implica conocer como se guardan los nombres de los archivos donde se guarda el contenido de ese archivo. Los sistema de archivo son los encargados de organizar la informacion del disco duro. Esto implica conocer como se guardan.

     Desde los inicios de la PC se han desarrollado muchos sistemas de archivos , he aqui los dos mas importantes.

FAT32: Fue un sistema de archivos se utilizo sistemas operativos anteriores  en Windows2000 pero es necesario conocerlo ya que se implementa en unidades de almacenamiento con escasa capacidad como las memorias Flash.

NTFS: Es el sistema de archivos utilizados por Microsoft en la actualidad en sistemas operativos.



REFLEXION:
El disco duro otro de nuestros componentes criticos, es de suma importancia conocer todos los aspectos tecnicos de el para poder agilizar nuestro rendimiento, desde como saber atender su correcto mantenimiento realizando periodicamente los procesesos de desfragmentacion y scanneo para corregir anomalias hasta como saber utilizarlo para crear particiones en el y saber asprovechar toda su capacidad debidamnete.

jueves, 26 de enero de 2012

Normas de Seguridad












OPERAR EL EQUIPO DE CÓMPUTO CONFORME A LAS NORMAS DE SEGURIDAD E HIGIENE 

Bueno en este tema veremos los puntos de cómo hacer que tu computadora, dure un poco mas de lo previsto, sigue estos consejos:



1.-Trasladar el equipo de cómputo de acuerdo a las medidas de seguridad. nunca muevas el equipo cuando este prendido, asegúrate antes de moverlo de que este apagado, desconectado de la corriente eléctrica y desconecta todos los componentes de ella como el ratón, teclado, monitor, impresora, etc. el mejor traslado de un equipo de cómputo es en una caja de cartón resistente y empaques de hielo seco, esto es, para evitar que los movimientos de la computadora afecten partes internas o externas de la misma

2.-Evita movimientos bruscos o golpes al equipo de cómputo, ya que pueden afectar en sus piezas internas y/o en los plásticos externos, vidrio del monitor, tela de las bocinas, etc., así mismo evita el contacto de la computadora con cualquier tipo de líquido (agua, refresco, café, líquidos corrosivos, etc.). Mantén el equipo en un lugar seco y fresco ya que el calor o la exposición al sol le puede afectar piezas internas al CPU y monitor. Cuida su computadora mientras la traslada.





 3.-Conectar y desconectar los diferente dispositivos. empezaremos viendo qué puertos vienen en el cpu, para esto podemos buscarlos en la parte trasera, no todos están ubicados en el mismo lugar, este es un ejemplo: en el cpu no difieren si es horizontal o vertical el gabinete ya que los puertos pueden estar de las 2 formas sin que esto afecte el desempeño, su funcionamiento es exactamente igual

4.-utilizar los equipos de proteccion contra variaciones de corriente. probablemente un usuario de pc no puede imaginar una pesadilla peor que el hecho de que un pico de voltaje muy fuerte, como el que produce un relámpago, queme los delicados componentes internos del computador. si se adquiere un buen supresor de picos, el pc queda protegido contra ese suceso. sin embargo hay problemas eléctricos menos intimidantes y notorios, y por ello más peligrosos, que pueden dañar lentamente los componentes del computador, sin que la persona lo note. se trata de fluctuaciones de voltaje.

5.-Limpieza Física y normas de seguridad de equipo de computo Uno de los aspectos más importantes en el mantenimiento de una PC es la limpieza física interior. Este factor no es tan importante en las computadoras portátiles (laptops), cuyo interior está más aislado y protegido. Sin embargo en el interior de las computadoras de mesa, clones o de marca, se acumula suciedad de diversos orígenes, y los conectores interiores tienden a oxidarse o a disminuir su conectividad por factores mecánicos

 6.-El grado de suciedad acumulado en una PC depende fundamentalmente del ambiente donde se encuentra instalada. Los principales orígenes de la suciedad interior son los siguientes: - Polvo ambiental - Huevos y deposiciones de origen animal - Corrosión de componentes internos - Oxígeno del aire, que inevitablemente genera procesos de oxidación 

 7.-Equipo de limpieza: utilizar aire comprimido para sacar la suciedad de todos los recovecos pero el polvo sale disparado y si el ordenador está muy sucio se puede montar un cisco de cuidado. Se puede utilizar un aspirador, tan efectivo me parece suficiente para quitar la mayor parte de la suciedad. Se pueden ayudar con una brocha pequeña para trabajar los lugares con un acceso más complicado. 
Limpiezas periódicas: es difícil decir cada cuanto tiempo hay que limpiar el equipo, depende de las condiciones del entorno y puede ser interesante hacerlo cada tres meses o una vez al año.




8.-El interior de una PC es un albergue ideal para cucarachas, pequeños roedores, y diversos tipos de insectos. Una PC cuenta generalmente con infinidad de aberturas por donde estos entes penetran, generalmente en horas de la noche, eligiendo en ocasiones a la PC como morada, procreando en su interior. ¿Qué puede pasar dentro de una PC?

9.-Antes de intentar tocar o desconectar componentes internos debemos estar seguros que la PC se encuentre totalmente des energizada, ya que una desconexión en caliente puede resultar dañina. También debemos tomar la precaución de descargar la electricidad estática de nuestro cuerpo antes de tocar componentes de microelectrónica, especialmente las memorias. ¿Qué debemos hacer antes de desconectar componentes internos? 


10.-Existen instrumentos que permiten una descarga total, pero si no se cuenta con tales instrumentos debemos hacer contacto durante unos cinco segundos con todos los dedos de ambas manos a los componentes desnudos conectados al chasis de la PC, como por ejemplo tornillos. Además de esta precaución, nunca deben tocarse 




11.-Es importante ver que el ventilador esté libre de etiquetas, pelusas o algo que obstaculice la entrada de aire al procesador, al lado del ventilador se encuentra un switch con los números 0 y 1 los cuales representan: 0 sin entrada de energía y 1 con entrada libre de energía; cuando estés por conectar o desconectar tu equipo de cómputo asegúrate que este presionado el switch del lado donde este el 0. ¿Que medidas debemos tomar?

 
12.-Ahora que ya están todos los componentes conectados y la computadora en una mesa apropiada, podemos conectar el monitor, el CPU, las bocinas, la impresora, etc., al regulador y este a la corriente eléctrica. Ahora cambie el switch trasero del CPU antes mencionado (que quede en 1) para que así pase la corriente y pueda encender el equipo de cómputo.


REFLEXION:

Debemos comprender que es importante seguir las normas de seguridad e higiene ya que podemos prevenir cualquier accidente con nuestro equipo de computo que nos pudiese resultar en una lesión para nosotros o desperfecto para el equipo lo cual provocaría que realizáramos un gasto innecesario que pudiese haber sido prevenido con anticipación.
Las normas de seguridad e higiene están establecidas para asegurar el mayor rendimiento  de nuestro equipo así como de asegurarse que el equipo va a aprovecharse al máximo en toda su vida útil.


La Fuente de Poder


Como funciona una fuente ATX





ATX son las siglas de ("Advanced Technology eXtended") ó tecnología avanzada extendida, que es la segunda generación de fuentes de alimentación introducidas al mercado para computadoras con microprocesador Intel® Pentium MMX.  
     
La fuente ATX es un dispositivo que se monta internamente en el gabinete de la computadora , la cuál se encarga básicamente de transformar la corriente alterna de la línea eléctrica comercial en corriente directa; la cuál es utilizada por los elementos electrónicos y eléctricos de la computadora. Otras funciones son  las de suministrar la cantidad de corriente y voltaje que los dispositivos requieren así como protegerlos de problemas en el suministro eléctrico como subidas de voltaje. A la fuente ATX se le puede llamar fuente de poder ATX, fuente de alimentación ATX, fuente digital, fuente de encendido digital, fuentes de pulsador,  entre otros nombres.

ATX es el estándar actual de fuentes que sustituyeron a las fuentes de alimentación AT.



Características generales de la fuente ATX

  • Es de encendido digital, es decir, tiene un pulsador que al activarse regresa a su estado inicial, sin embargo ya generó la función deseada de encender ó apagar.
  • Algunos modelos integran un interruptor trasero para evitar consumo innecesario de energía eléctrico durante el estado de reposo "Stand By"
  • Este tipo de fuentes se integran desde los equipos con microprocesador Intel® Pentium MMX hasta los equipos con los mas modernos microprocesadores.
  • Es una fuente que se queda en "Stand By" ó en estado de espera, por lo que consumen electricidad aún cuando el equipo este "apagado", lo que también le da la capacidad de ser manipulada con software.
 Partes que componen la fuente ATX
Internamente cuenta con una serie de circuitos encargados de transformar la electricidad para que esta sea suministrada de manera correcta a los dispositivos. Externamente consta de los siguientes elementos:


1.- Ventilador: expulsa el aire caliente del interior de la fuente y del gabinete, para mantener frescos los circuitos.

2.- Interruptor de seguridad: permite encender la fuente de manera mecánica.

3.- Conector de alimentación: recibe el cable de corriente desde el enchufe doméstico.

4.- Selector de voltaje: permite seleccionar el voltaje americano de 127V ó el europeo de 240V.

5.- Conector SATA: utilizado para alimentar los discos duros y las unidades ópticas tipos SATA.

6.- Conector de 4 terminales: utilizado para alimentar de manera directa al microprocesador.

7.- Conector ATX: alimenta de electricidad a la tarjeta principal.

8.- Conector de 4 terminales IDE: utilizado para alimentar los discos duros y las unidades ópticas.

9.- Conector de 4 terminales FD: alimenta las disqueteras.

Potencia de la fuente ATX


Las fuentes ATX comerciales tienen Wattajes de: 300 Watts (W), 350 W, 400 W, 480 W, 500 W, 630 W, 1200 W y hasta 1350 W. Repasando algunos términos de electricidad, recordemos que la electricidad no es otra cosa mas que electrones circulando a través de un medio conductor. La potencia eléctrica de una fuente ATX se mide en Watts (W) y esta variable está en función de otros dos factores:



  • El voltaje: es la fuerza con la que son impulsados los electrones a través de la línea eléctrica doméstica. Se mide en Volts (V) y en nuestro caso es de 127 V.

  • La corriente: es la cantidad de electrones que circulan por un punto en específico cada segundo. Su unidad de medida es el Ampere (A).

Ejemplo: si una fuente ATX indica que es de 400 W entonces:

El Wattaje = Voltaje X Corriente  ,   W = V X A

Sabemos que el voltaje es de 127 V y tenemos los Watts, solo despejamos la corriente.

A = W / V       ,    A = 400 W / 127 V   ,    A = 3.4
     
Entonces lo que interesa es la cantidad de corriente que puede suministrar la fuente, porque a mayor cantidad de corriente, habrá mayor potencia y podrá alimentar una mayor cantidad de dispositivos. En este caso es de 3.4 Amperes.

Funcionamiento de una fuente ATX

En la siguiente lista se muestran las diferentes etapas por las que la electricidad es transformada para alimentar los dispositivos de la computadora. Si gustas conocer mas sobre electricidad:


1.- Transformación: el voltaje de la línea doméstica se reduce de 127 Volts a aproximadamente 12 Volts  ó 5 V. Utiliza un elemento electrónico llamado bobina reductora.



2.- Rectificación: se transforma el voltaje de corriente alterna en voltaje de corriente directa, esto lo hace dejando pasar solo los valores positivos de la onda (se genera corriente continua), por medio de elementos electrónicos llamados diodos.



3.- Filtrado: esta le da calidad a la corriente continua y suaviza el voltaje, por medio de elementos electrónicos llamados capacitores.




4.- Estabilización: el voltaje ya suavizado se le da la forma lineal que utilizan los dispositivos. Se usa un elemento electrónico especial llamado circuito integrado. Esta fase es la que entrega la energía necesaria la computadora.




Y asi es como funciona una fuente de poder ATX.





Diagnostico del Hardware

DIAGNOSTICO DE HARDWARE:


1. Por qué es importante conocer el hardware de un PC

Muchas de las personas que compran un ordenador no sabe el modelo ni la versión de sus piezas. Este desconocimiento puede provocar un mal uso del ordenador ya que si no sabe el equipo del que uno de dispone uno puede adquirir programas que no le funcionen correctamente o piezas que sean incompatibles con otras.
Además, conocer los detalles de las tripas de nuestro ordenador nos ayudará a plantear los problemas en los foros y en las tiendas de informática con mayor claridad y facilitando así la resolución de los mismos.

2. Método manual de windows

Sistema Operativo, Procesador y Memoria RAM
El método más fácil para saber qué estamos manejando es hacer click con el botón derecho sobre el icono de Mi PC y a continuación click en propiedades.

Propiedades mi PC
Vision general











Inmediatamente nos saldrá una ventana con los datos generales de nuestro ordenador. Primero veremos cuál es la versión de nuestro sistema operativo (importantísimo saberlo e indicarlo para plantera dudas en foros por ejemplo) que en el caso de la imagen es Windows XP Profesional con Service Pack 2.
Debajo de los datos de registro veremos las características del procesador y de la memoria RAM (en la imagen el procesador es AMD Athlon 1700 y la memoria es de 512 Mb). Estos dos datos son muy importante por ejemplo a la hora de comprar un programa o un juego de ordenador ya que pedirá unos requisitos mínimos para su funcionamiento que conviene saber si cumplimos.

Otros componentes
Si en la venta anterior cambiamos a la pestaña Hardware y hacemos click en administrador de dispositivos accederemos a otros componentes como las unidades de Cd-Rom, las tarjetas de Red, el nombre de la tarjeta gráfica, etc ...



Mi PC / Hardware
Administrador de dispositivos











3. Método Visual.

Podemos realizar una inspeccion visual del hardware para conocer su capacidad y la calidad de su estado.




Para hacerlo podemos quitar la parte lateral de nuestro gabinete y observar su interior para reconocer nuestros dispositivos conectados a la motherboard.


REFLEXION:

 Realizar una inspección visual de nuestro hardware nos asegura una completa flexibilidad y confianza al momento de actualizar partes de este ya que conoceríamos la capacidades de este así como de la compatibilidad del equipo y pronosticar futuras fallas en el.
Debe ser importante realizar diagnósticos de nuestro Hardware periódicamente para así poder prevenir fallas y descomposturas en el, también podemos realizarlo nosotros para poder evitar  innecesareas visitas con el consultor de mantenimiento asi como de prevenir futuras fallas de origen similar.

miércoles, 25 de enero de 2012

Memorias RAM


La memoria principal o RAM (Random Access Memory, Memoria de Acceso Aleatorio) es donde el computador guarda los datos que está utilizando en el momento presente. El almacenamiento es considerado temporal por que los datos y programas permanecen en ella mientras que la computadora este encendida o no sea reiniciada.
Se le llama RAM por que es posible acceder a cualquier ubicación de ella aleatoria y rápidamente

Físicamente, están constituidas por un conjunto de chips o módulos de chips normalmente conectados a la tarjeta madre. Los chips de memoria son rectángulos negros que suelen ir soldados en grupos a unas plaquitas con "pines" o contactos:

   La diferencia entre la RAM y otros tipos de memoria de almacenamiento, como los disquetes o los discos duros, es que la RAM es mucho más rápida, y que se borra al apagar el computador, no como los Disquetes o discos duros en donde la información permanece grabada.
Tipos de RAM
Hay muchos tipos de memorias DRAM, Fast Page, EDO, SDRAM, etc. Y lo que es peor, varios nombres. Trataremos estos cuatro, que son los principales, aunque mas adelante en este Informe encontrará prácticamente todos los demás tipos.
·         DRAM: Dinamic-RAM, o RAM DINAMICA, ya que es "la original", y por tanto la más lenta.
·         Usada hasta la época del 386, su velocidad típica es de 80 ó 70 nanosegundos (ns), tiempo éste que tarda en vaciarse para poder dar entrada a la siguiente serie de datos. Por ello, es más rápida la de 70 ns que la de 80 ns.
·         Físicamente, aparece en forma de DIMMs o de SIMMs, siendo estos últimos de 30 contactos.
·         Fast Page (FPM): a veces llamada DRAM (o sólo "RAM"), puesto que evoluciona directamente de ella, y se usa desde hace tanto que pocas veces se las diferencia. Algo más rápida, tanto por su estructura (el modo de Página Rápida) como por ser de 70 ó 60 ns.
·         Usada hasta con los primeros Pentium, físicamente aparece como SIMMs de 30 ó 72 contactos (los de 72 en los Pentium y algunos 486).
·         EDO: o EDO-RAM, Extended Data Output-RAM. Evoluciona de la Fast Page; permite empezar a introducir nuevos datos mientras los anteriores están saliendo (haciendo su Output), lo que la hace algo más rápida (un 5%, más o menos).
·         Muy común en los Pentium MMX y AMD K6, con velocidad de 70, 60 ó 50 ns. Se instala sobre todo en SIMMs de 72 contactos, aunque existe en forma de DIMMs de 168.
·         SDRAM: Sincronic-RAM. Funciona de manera sincronizada con la velocidad de la placa (de 50 a 66 MHz), para lo que debe ser rapidísima, de unos 25 a 10 ns. Sólo se presenta en forma de DIMMs de 168 contactos; es usada en los Pentium II de menos de 350 MHz y en los Celeron.
·         PC100: o SDRAM de 100 MHz. Memoria SDRAM capaz de funcionar a esos 100 MHz, que utilizan los AMD K6-2, Pentium II a 350 MHz y computadores más modernos; teóricamente se trata de unas especificaciones mínimas que se deben cumplir para funcionar correctamente a dicha velocidad, aunque no todas las memorias vendidas como "de 100 MHz" las cumplen.
·         PC133: o SDRAM de 133 MHz. La más moderna (y recomendable).
 SIMMs y DIMMs
Se trata de la forma en que se juntan los chips de memoria, del tipo que sean, para conectarse a la placa base del ordenador. Son unas plaquitas alargadas con conectores en un extremo; al conjunto se le llama módulo.
El número de conectores depende del bus de datos del microprocesador, que más que un autobús es la carretera por la que van los datos; el número de carriles de dicha carretera representaría el número de bits de información que puede manejar cada vez.
·         SIMMs: Single In-line Memory Module, con 30 ó 72 contactos. Los de 30 contactos pueden manejar 8 bits cada vez, por lo que en un 386 ó 486, que tiene un bus de datos de 32 bits, necesitamos usarlos de 4 en 4 módulos iguales. Miden unos 8,5 cm (30 c.) ó 10,5 cm (72 c.) y sus zócalos suelen ser de color blanco.
Los SIMMs de 72 contactos, más modernos, manejan 32 bits, por lo que se usan de 1 en 1 en los 486; en los Pentium se haría de 2 en 2 módulos (iguales), porque el bus de datos de los Pentium es el doble de grande (64 bits).
·         DIMMs: más alargados (unos 13 cm), con 168 contactos y en zócalos generalmente negros; llevan dos muescas para facilitar su correcta colocación. Pueden manejar 64 bits de una vez, por lo que pueden usarse de 1 en 1 en los Pentium, K6 y superiores. Existen para voltaje estándar (5 voltios) o reducido (3.3 V).



REFLEXION:

El papel de la memoria RAM en nuestro PC desempeña junto con el procesador unos de los papeles mas importantes dentro de este, su papel es casi tan importante como el del procesador, conocer a fondo este dispositivo critico nos traería grandes ventajas ya que podemos optimizar el rendimiento de todo nuestro sistema con una simple actualización de este dispositivo, elevar su capacidad podría aumentar casi al doble nuestro rendimiento.
Debemos de tener en cuenta que no todas las tarjetas madres son compatibles con los módulos de memoria RAM y que ademas doblar la capacidad no quiere decir que el sistema en todo su conjunto sea capaz  de aprovechar todo ese almacenamiento y por ende aumentar el rendimiento.